

HORIZON-CL4-2024-DIGITAL-EMERGING-01-45 Quantum sensing and metrology for market uptake (IA)

PROMISE

<u>PRO</u>totypes of <u>Magnetic Imaging Systems for Europe</u>

Starting date of the project: 01/01/2025 Duration: 44 months

= Deliverable D1.2 = System specifications

Due date of deliverable: 31/05/2025 Actual submission date: 20/06/2025

WP and Lead Beneficiary: WP1, FBK Version: V2.0

Dissemination level		
PU	Public	Х
PP	Restricted to other programme participants (including the Commission Services)	
RE	Restricted to a group specified by the consortium (including the Commission Services)	
CO	Confidential, only for members of the consortium (including the Commission Services)	

AUTHOR(s)

Name	Surname	Organisation	Email
Hans	Bartling	TNO	hans.bartling@tno.nl

DOCUMENT CONTROL

Document version	Date	Change
v0.1	02.06.2025	First draft
v0.2	04.06.2025	Revisions by WP1 leader and T1.1 leader
v1.0	11.06.2025	Second draft
v1.1	12.06.2025	Revisions by PC
v1.2	19.06.2025	Revisions by PM
v2.0	20.06.2025	Final version

VALIDATION PROCESS

Reviewer name	Reviewer organisation	Reviewer role	Validation date
Enrico Manuzzato	FBK	WP1 leader	04.06.2025
Hans Bartling	TNO	T1.2 leader	11.06.2025
Xavier Vidal	TEC	T1.1 leader and Project Coordinator (PC)	12.06.2025
Roman Pasek	ABIMI	Project Manager (PM)	19.06.2025

DOCUMENT DATA

Keywords System specifications	
Delivery date	20.06.2025

DISTRIBUTION LIST

Date	Issue	Recipients
11.06.2025	v0.1	WP, Task leaders, PC and PM for internal review
20.06.2025	v2.0	Submission at EC portal

DISCLAIMER

Any dissemination of results reflects only the authors' view and the European Commission Horizon Europe is not responsible for any use that may be made of the information this Deliverable contains.

Executive Summary

This document lists all instrument requirements to ensure measurements and enable the successful execution of the use cases. It is the second technical step to reach TRL7 at the end of PROMISE. For each use case, we list the requirements for the sample, image and measurement sensitivity, as well as additional requirements particular to that use case. From those use-case requirements, we then draw conclusions for the specifications of the instrument, which will be directing the system design in the next phase of the PROMISE.

Table of Contents

1.	In	ntroduction	5
2.	S	Specifications	Error! Bookmark not defined.
2	2.1.	. Graphene chips	6
2	2.2.	. Al alloys and conductive samples	7
2	2.3.	. Micromagnets	8
2	2.4.	. Microdisks and nanostructures	9
2	2.5.	. Skin cancer and healthy cells	10
3.	С	Conclusions	11
4.	D	Degree of progress	

PROMISE

1. Introduction

The details of this deliverable have been discussed partially or in its totality by the following participants:

Name	Surname	Organisation
Abdellatif	Bachar	MF
Hans	Bartling	TNO
René	Böttcher	Airbus CRT
Lola	Boyano	UPV/EHU
Milan	Calic	MF
Estibaliz	Garrote	TEC
Johannes	Lang	DIA
Christoph	Findler	DIA
Enrico	Manuzzato	FBK
Rafael	Morales	UPV/EHU
Amaia	Rebollo	GSEMI
Xavier	Vidal	TEC
Amaia	Zurutuza	GSEMI
Alba	Centeno	GSEMI

2. Requirements per use case

This section defines the requirements for the instrument in order to enable successful execution of each use case. In a later section, we will discuss the instrument specifications that follow from the individual use case requirements.

2.1. Graphene chips

Graphene chips are provided by GSEMI. The measurements will be compared with GSEMI's electrical quality control measurements, which gives average mobility of charge carriers information. These samples are related to T5.1.

		Comments
Magnetic requirements		
Magnetic resolution	10 µA → 60 nT	Based on 10 µA through infinite sheet
Total measurement time	1 hr	
Sensitivity	3 µT / √Hz	
Max. magnetic field	100 µA → 0.6 µT	
Dynamic range	4.0 GHz	
External magnetic field	~ 10 mT	To split NV transitions
Imaging requirements		
Spatial resolution	1 µm	
Field of view	200 µm x 200 µm	
Sample requirements		
Sample size graphene (length x width)	90 µm x 90 µm	Size of interest to image
Sample size full chip (length x width x height)	3 mm x 3 mm x 1 mm	
Other requirements		
Laser power	< 1 mW / µm²	
DC current	< 100 µA, better < 25 µA	

2.2. Al alloys and conductive samples

Aluminium alloys and conductive samples are provided by Airbus CRT. These samples are related to T5.2. The samples will be compared with data obtained by the scanning vibrating electrode technique (SVET), which is one of the main techniques employed by Airbus CRT for R&D-related characterization of localised corrosion. This technique requires long duration measurements, and the sample position is typically 200 µm away.

For the requirements, we focus on samples 1-3 (see D1.1).

		Comments
Magnetic requirements		
Magnetic resolution	100 pT	Rough estimate based on 100 μA / cm^2 at 200 μm above surface, so > 100 μA / cm^2 at 20 μm . The signal may be stronger.
Total measurement time	~ 1 hr	
Sensitivity	~ 10 nT / √Hz	
Max. magnetic field	~ 100 nT	
Dynamic range	4.0 GHz	
External magnetic field	~ 10 mT	To split NV transitions
Imaging requirements		
Spatial resolution	1 µm	Cu particles 1-20 µm
Field of view	200 µm x 200 µm	Minimal value
Sample requirements		
Sample size region of interest (length x width)	200 μm x 200 μm	Size of interest to image, minimal value. Optionally 1000 $\mu mx1000\mu m.$
Sample size Al alloy (length x width x height)	2 cm x 2 cm x 1 mm	
Other requirements		
Electrolyte incorporation	20 µm to 100 µm of electrolyte on sample	To generate a corrosion current

2.3. Micromagnets

Arrays of micromagnets are provided by MF. These samples are related to T5.3. The aim is to reach a spatial resolution of the magnetic field below 15 μ m, which is the current resolution obtained with CMOS camera.

		Comments
Magnetic requirements		
Magnetic resolution	0.1 mT	Expectation of signal to be measured
Total measurement time	1 s	
Sensitivity	100 µT / √Hz	
Max. magnetic field	~ 150 mT	At 10 μm above the surface, estimated from 100 mT at 50 μm above the surface
Dynamic range	10.0 GHz	
External magnetic field	~ 10 mT	To split NV transitions
Imaging requirements		
Spatial resolution	<1µm	
Field of view	500 μm x 500 μm	
Sample requirements		
Sample size region of interest (length x width x height)	300 μm x 300 μm x 50 μm	Size of interest to image
Sample size (length x width)	30 mm x 30 mm	Ideally up to 200 mm diameter wafer
Other requirements		
NV layer thickness	<= 100 nm	To avoid a magnetic field gradient over the NVs > 0.1 mT
NV-magnet distance should be known		To characterize the absolute magnetic field at a certain distance

2.4. Microdisks and nanostructures

Microdisks and nanostructures are provided by UPV/EHU. These samples are related to T5.3. Measurements will be compared with simulations. Moreover, some sample will be benchmarked with vibrating sample magnetometer and magnetic hysteresis loop.

		Comments
Magnetic requirements		
Magnetic resolution	0.1 – 30 mT	At 0.5 – 1 µm from the microdisk
Total measurement time	~ 10 s	
Sensitivity	100 µT / √Hz	
Max. magnetic field	100 mT	
Dynamic range	6.0 GHz	
External magnetic field	100 mT	To reach saturation
Imaging requirements		
Spatial resolution	1 µm	Ideally < 500 nm
Field of view	500 μm x 500 μm	
Sample requirements		
Sample size microdisc (diameter)	200 nm – 4 µm	Single structures have sizes ranging from 200 nm x 800 nm to 4 μm x 4 μm
Sample size full chip	~ size of diamond	
Other requirements		
NV layer thickness	< 300 nm	
AC magnetic field	10 mT @ 1-20 Hz	Direction is perpendicular to the diamond. Only necessary for microdisks.

2.5. Skin cancer and healthy cells

Skin cancer cells and healthy cells as control are provided by the Faculty of Medicine (SM) of the UPV/EHU. These samples are related to T5.4. Two of the three different groups of samples are combined with the abovementioned nanostructures, which are part of T5.3. The measurements will be compared with their current approach using SQUID and confocal microscopes for the viability of the internalization of the nanostructures by the different cell types. Attention should be paid to whether changes in cell counts and cell viability come from growth conditions on the diamond surface compared to the surface used for SQUID and confocal measurements.

		Comments
Magnetic requirements		
Magnetic resolution	0.1 – 30 mT	
Total measurement time	~ 10 s	
Sensitivity	100 μT / √Hz	
Max. magnetic field	100 mT	
Dynamic range	6.0 GHz	
External magnetic field	10 mT	To reach saturation for microdisks. Can be as high as 100 mT, but we will focus on camples with M saturation below 10 mT external magnetic field.
Imaging requirements		
Spatial resolution	1 µm	
Field of view	500 μm x 500 μm	100 μm x 100 μm to analyse cell details
Sample requirements		
Sample size cell (diameter)	10 μm – 60 μm, most probably ~ 20 μm	
Sample size full chip	~ size of diamond	The diamond will later be integrated in chamber with dimensions of ~ few cm.
Other requirements		
NV layer thickness	< 300 nm	
AC magnetic field	10 mT @ 1-20 Hz	Direction is perpendicular to the diamond. Only necessary for microdisks.

3. Instrument specifications

In this section, we distil the instrument specifications from the use-case requirements discussed in the previous sections. In making this translation, we assume that we want the same or very similar instruments for all the use cases. The instrument should therefore be able to fit all samples, cover all field-of-views, use the same camera, etc. An important requirement that may vary per use case is the diamond. For example, different NV layer thicknesses and concentrations might be appropriate depending on the requirements of each use case.

PROMISE

3.1. Sample requirements

Sample requirements		Comments
Sample size to inspect (length x width)	30 mm x 30 mm	Ideally up to 200 mm diameter wafer, but since that is only required for one use case, we do not consider that initially. Note that additionally we might need room for a chamber for biological cells.

3.2. Imaging requirements

Imaging requirements		Comments
Spatial resolution	1μm	
Field of view	500 μm x 500 μm	

3.3. Magnetic requirements

Magnetic requirements		Comments
Sensitivity	Airbus CRT: 10 nT / \sqrt{Hz} Other: 1 μ T / \sqrt{Hz}	
Max. magnetic field	200 mT	
Dynamic range	10.0 GHz	Microwave frequencies
External magnetic field	~ 10 mT	To split NV transitions

3.4. Microwave requirements

Microwave requirements		Comments
MW amplitude (Rabi frequency, average over field-of-view)	20 MHz	
MW homogeneity in field-of-view	< 10%	

3.5. Diamond requirements

Here, we present the diamond requirements per use case, as we may use different diamonds for different use cases. These are first indications. More detailed diamond specifications will be decided upon during the design phase in WP2.

General diamond requirements		Comments
¹⁵ N enriched?	Yes, ideally	
¹² C enriched?	Yes, ideally	For good sensitivity
Diamond thickness	100 μm	We aim for membranes to minimize spherical aberrations and get a high-quality image. A thickness below 100 μ m would be a first goal but ideally, we will need 10 μ m. The handling of the membrane can pose an issue. Note that this may not be necessary for all use cases, but particularly for those that require good spatial resolution.

GSEMI		Comments
NV layer concentration	As high as possible without deteriorating T_2^*	
NV layer thickness	~ 1 µm	For good sensitivity

Airbus CRT		Comments
NV layer concentration	As high as possible without deteriorating T_2^*	
NV layer thickness	~ 1 µm	Ideally thicker, to increase sensitivity

MF		Comments
NV layer concentration	As high as possible without deteriorating T_2^*	
NV layer thickness	<= 100 nm	To avoid a magnetic field gradient over the NVs > 0.1 mT

UPV/EHU: magnetic materials		Comments
NV layer concentration	As high as possible without deteriorating T_2^*	
NV layer thickness	< 300 nm	For good spatial resolution

UPV/EHU: cells		
NV layer concentration	As high as possible without deteriorating T_2^*	
NV layer thickness	< 300 nm	For good spatial resolution

3.6. Camera requirements

We now discuss the requirements for the camera. First, we consider the expected photon flux at the camera. Assuming a laser power of 5 W, a 500 μ m field-of-view, a 2% collection efficiency, a 5% quantum efficiency for the camera, 10⁶ μ m⁻² NV area density, 40 μ m pixel size, magnification 50x, we would get a per-pixel photon count rate of ~ 160 MHz. If instead the magnification is 20x (10x), we would get a per-pixel photon count rate of ~ 1 GHz (~ 4 GHz). Therefore, in 1 μ s, one would expect to observe some hundred(s) photons. This does not serve as a strict requirement for the camera, but as an indication of what can be expected.

In order to combine a 500 μ m field-of-view with 1 μ m spatial resolution, the camera would need at least 500 x 500 pixels. If that is not possible, it is necessary to either reduce the field-of-view, which is possible for the *GSEMI*, *Airbus CRT* and *UPV/EHU* use case or reduce the spatial resolution, which may be the better way to go for the *MF* use case.

For pulsed operation, typical time scales of an experimental repetition (laser + MWs) are \sim 100-200 µs (except for relaxation, in which case it is \sim ms). Given that timescale, the readout time of the camera should ideally be comparable to or smaller than that. If that is not possible, the camera readout time should be as small as possible. In order to optimise the NV readout time, the camera exposure should be able to be chosen with \sim 50 ns accuracy. Typical exposure times will be in the \sim 300 ns to few µs regime.

For continuous operation, during which the laser and MWs are on simultaneously, typical time scales of an experimental repetition should be much larger than or comparable to the camera readout time of ~ 200 μ s, which gives 10⁴ - 10⁵ photons, requiring > 14 bits-per-pixel.

Camera requirements		
Number of pixels	>= 200 x 200	
Readout time camera	200 µs	Ideally shorter
Pixel size	40 x 40 – 50 x 50 μm²	This is set
Per-pixel photon count rate	~ 100s of MHz	Estimate of the per-pixel photon count rate for a relatively high-density NV sample
Sensor exposure time	Continuous: > 200 µs Pulsed: ~ 300 ns – 10 µs	
Sensor exposure setting accuracy	~ 50 ns	
Bits-per-pixel	Continuous: > 14 bbp	
	Pulsed: 8-10 bbp	
Number of readout bins	>3	
Readout bin time	> 100 ns	

3.7. Other requirements

Other requirements	Comments
Computer-controllable stages	To allow for automation and larger field-of-views
Pulsed and continuous-wave operation	Mainly CW-ODMR and T1 relaxation
Compatibility with multiple cameras	
Allow simple exchange of objectives or a rotator stage	To exchange field-of-view for spatial resolution
Temperature stability	< 2 °C
Interlock on the instrument for laser safety	
Other potential requirements	
Non-magnetic objective	
Flat-top illumination	As opposed to Gaussian illumination

4. Conclusions

In conclusion, we have discussed the requirements for PROMISE per specific use case and have deduced the requirements for the instrument to address each use case. This serves as important input for the system design, which follows in the next work packages.

5. Degree of progress

This deliverable is a 100% complete. The specification and requirements of WP1 to define prototypes are completed.

